평판-평판 레오미터에서 고농축 현탁계의 벽면 No-slip 층 효과

홍영기 · 최종한 · 이상묵*, * · 이재욱*

서강대학교 화공생명공학과, *단국대학교 화학공학과 (2016년 6월 9일 접수, 2016년 8월 2일 수정, 2016년 8월 10일 채택)

Wall No-slip Layer Effects of Highly Concentrated Suspensions in Plate-plate Rheometer

Young Gi Hong, Jong Han Choi, Sangmook Lee*, *,† , and Jae Wook Lee *

Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 16890, Korea *Division of Chemical Engineering, Dankook University, 152 Jukjeon-Ro, Suji-gu, Yongin, Gyeonggi-do 04107, Korea (Received June 9, 2016; Revised August 2, 2016; Accepted August 10, 2016)

초록: 평판-평판 레오미터를 이용하여 Engage 8407 기지재에 Dechlorane plus 25를 60 wt% 혼합한 고농축 현탁계 의 전단 점도를 연구하였다. 평판-평판간 간격을 변화시켜가며 유변학적 특성을 분석한 결과, 회전흐름 시 넓은 범 위의 전단응력에서 벽면에서의 no-slip이 밝혀졌다. 또한 높은 벽면 전단응력에서 고농축 현탁계의 겉보기 전단 점 도거동을 조사하였으며 no-slip 층의 두께를 결정하였다. 벽면 no-slip 효과를 이용하여 고농축 현탁계의 유변학적 특성을 보정할 수 있으리라 사료된다.

Abstract: Shear viscosity of a highly concentrated suspension consisting of an Engage 8407 matrix mixed with a Dechlorane plus 25 at 60 wt% was studied by using a plate-plate rheometer. The rheological characterization at various gap distances between two plates revealed no-slip of the suspension at the walls over a broad range of shear stresses in rotational flows. The apparent shear viscosity behavior of highly concentrated suspensions at high wall shear stress was investigated, and the no-slip layer thickness was determined. It was concluded that the rheological characteristics of the highly concentrated suspensions could be corrected by no-slip effects at the walls.

Keywords: wall no-slip, highly concentrated suspensions, true viscosity, extended velocity, no-slip layer.

서 론

고체 입자를 함유한 고분자 현탁 재료는 페인트, 콤포지트, 마이크로젤, 화장품 등 다양한 분야에서 사용되고 있으며 많 은 연구가 보고되고 있다.^{1.5} 특히, 이들 중 최대 충전비에 근 접한 고농축 현탁계는 세라믹 수지 및 고체연료 관련된 분야 에 사용되고 있는데 기존의 일반적인 유변학적 거동과는 다 른 독특한 거동을 보이고 있는 바 안전하고 최적의 가공조건 을 선정하는데 있어서 이러한 고농축 현탁계의 깊은 유변학 적 이해는 필수적이다.⁶⁹

이러한 현탁계의 특징 중 하나는 가공이나 측정 중 구조변 화에 의한 복잡성으로 높은 충전율에서 현탁계의 상대점도는 입자의 크기, 모양, 다분산성 등의 변화에 매우 민감하게 변 하게 된다.¹⁰ 다른 하나는 점도계의 벽면에서의 미끄러짐이다. 일반적으로 Coette와 모세관에서의 벽면 미끄러짐의 분석들 은 Mooney의¹¹ 이론을 이용하며 수많은 연구자들에 의해 인 용되었다.^{12,13} 고농축 현탁계에서 현탁된 입자들의 국부농도 는 벌크에서보다 벽에서 더 낮은데 이는 물질이 전단을 받았 을 때 큰 속도구배가 낮은 점도 층에서 발생하고 벌크유체의 겉보기 미끄러짐 초래하기 때문이다.¹⁴⁻¹⁶

Figure 1은 단순전단 흐름의 경우, 일반 고분자 용액, 벽에 흡착하는 고분자 용액, 전혀 흡착하지 않는 고분자 용액에서 의 흐름을 표현한 것이다. 용액에서 일반적인 고분자 크기 수 준으로 보았을 때 no-slip 경계조건은 저분자 용액의 경우 대 부분 타당하며 Figure 1(a)와 같이 선형의 구배를 보인다. Figure 1(b)의 경우 고분자가 벽 표면에 흡착하여 벽 근처의 국부 점도가 상승하여 no-slip 층을 형성하게 되는 경우이다. Figure 1(c)는 벽면근처의 국부 점도가 벌크의 점도보다 낮은 경우로 미끄러짐 층을 형성한다. 이 중 고분자 현탁계에서는 Figure 1(c) 경우인 미끄러짐이 특히 중요한데 유변물성의 측

[†]To whom correspondence should be addressed.

E-mail: s mlee@naver.com

^{©2017} The Polymer Society of Korea. All rights reserved.

Figure 1. Schematic simple shear flow profiles of polymer solutions with (a) a no-slip boundary; (b) a no-slip layer; (c) a slip boundary.

정 시 이러한 미끄러짐으로 인하여 실제점도보다 낮은 값의 점도 측정결과를 얻게 되어 고분자 가공 등에 적용하거나 할 때 많은 문제를 초래하게 된다.

이 론

평판-평판 레오미터 실험에서 미끄러짐 속도와 실제 전단 속도를 결정하기 위해 Yoshimura와 Prudhomme은¹⁷ 두 가지 의 틈간격에서의 실험에 기반한 방법과 측정한 data를 보정 하기 위한 절차를 서술하였다. 평판-평판 레오미터의 평판 모 양은 Figure 2와 같이 나타낼 수 있다. 위 평판은 각속도 Ω 로 아래 평판에 상대적으로 회전한다. 좁은 틈간격에 대해 응 력은 임의의 *r* 방향 위치에서 간격을 가로질러 거의 일정하 다. Figure 2에 선형 속도 구배의 결과도 함께 도시하였다. 여 기에서 응력이 같기 때문에 미끄럼 속도는 두 벽면에서 같 다. 위쪽 평판의 속도는 Ωr이고 평행 평판 비틀림 유동 (parallel disk torsional flow)에서 겉보기 전단속도는 반지름 *r*의 선형함수이다.

Figure 2. Parallel disk velocity field. The figure shows wall slip velocity, actual shear rate, and apparent shear rate.

$$\Omega \cdot r = H \dot{\gamma}(\tau) + 2u_{\rm s}(\tau) \tag{1}$$

여기서, γ; 중심으로부터 반지름 거리, *H*; 틈간격, Ω; 위 평 판의 아래 평판에 대한 상대적인 각속도, γ(*t*); 실제 전단속 도, *u*_s(*t*); 미끄러짐 속도이다. 겉보기 전단속도, ½를 식 (2)와 같이 정의할 수 있다.

$$\dot{\gamma}_{a} = \frac{\Omega \cdot r}{H}$$
 (2)

겉보기 전단속도는 참 전단속도 및 미끄러짐 속도와 아래 식으로 관련되어 있다.

$$\dot{\gamma}_{a} = \dot{\gamma}(\tau) + \frac{2u_{s}(\tau)}{H}$$
(3)

여기에서, 평판 모서리에서의 전단응력은 식 (4)로부터 결정 될 수 있다.

$$\tau_{\rm R} = \frac{T}{2\pi R^3} \left[3 + \frac{d\ln T}{d\ln \dot{\gamma}_{\rm aR}} \right] \tag{4}$$

여기에서, *T*는 상부 평판을 회전시키는데 필요한 토크이고 하첨자 *R*은 평판 모서리 값을 의미한다. 즉, ½_R은 평판 끝 에서의 겉보기 전단 속도이다. 식 (4)는 모세관 데이터의 보 정에 사용되는 Rabinowitsch 보정과¹⁸ 비슷하다. 식 (4)에서 함수 *f*=*d*(ln*T*)/*d*(ln½_R)은 틈간격에 의존한다.¹⁷ 식 (5)는 또 한 *r*=*R*에서 다음과 같이 쓸 수 있다.

$$\dot{\gamma}_{aR} = \dot{\gamma}_{R}(\tau_{R}) + \frac{2u_{s}(\tau_{R})}{H}$$
(5)

마지막 식은 ' 대 1/H plot을 일정한 t_k에서 그린다면 직 선을 얻는다. 외삽된 절편은 평판 모서리에서 실제 전단속도 이고 기울기는 두배의 벽면미끄러짐 속도, 2u_x가 된다.

이상에서 보면, 벽에서 두께 8를 갖는 얇고 액체가 풍부한

폴리머, 제41권 제1호, 2017년

(liquid rich) 미끄러짐 층을 형성함으로써 현탁계가 미끄러지 게 하는 참 미끄러짐(true slip) 또는 겉보기 미끄러짐(apparent slip)에¹⁹⁻²¹ 의해 현탁계의 slip-aided flow가 일어난다. 모세관 에서의 미끄러짐 층 두께, δ는 fully developed, two phase flow, 뉴토니안, 비압축성, 층류, 등온의 가정 하에 다음과 같 이 계산할 수 있다.²²

$$\delta = \frac{u_{\rm s} \eta_{\rm s}}{\tau_{\rm w}} \tag{6}$$

여기에서, η_s 는 미끄러짐 점도(slip layer viscosity), τ_w 는 벽면 전단응력(wall shear stress), u_s 는 미끄러짐 속도(slip velocity), δ 는 미끄러짐층 두께이다.

본 연구에서는 이러한 일반적인 벽면 미끄러짐과 반대되는 현상이 발견되었는 바 이의 유변학적 거동을 해석하고자 하 였고 기존의 벽면 미끄러짐 이론을 응용하여 벽면의 no-slip 층의 두께를 계산하였다.

실 험

원료. 기지재로는 Dupont Dow사의 지방족 열가소성 탄성 체인 Engage 8407을 사용하였으며 충전제로는 Oxychem 사 의 난연제인 Dechlorane plus 25를 사용하였다. 본 연구에 사 용한 원료들의 구조식과 기본성질들을 Figure 3과 Table 1에 각각 나타내었다.

고농축 현탁계 제조. 고농축 현탁계의 혼화는 시그마 블레 이드가 장착된 회분식 혼련기(Haake, Rheomix 600)를 사용 하여 90 ℃, 60 rpm 조건에서 혼련하였다. 조성은 Engage 8407과 Dechlorane plus 25를 40:60 질량비로 계량하여 뚜껑 이 달린 컵에 넣고 흔들어서 골고루 섞이게 한 다음, 회분식 혼련기에 투입하여 용융 혼련하였다.

Figure 3. Structure of Dechlorane 25.

Table 1. Properties of Materials Used in This Study

혼련된 현탁계는 현탁계의 유변학적 거동을 조사하기 위해 가열 압축성형기(carver laboratory press)를 이용하여 90 ℃, 19000 lb_r 조건에서 판상으로 제조하였다.

유변학적 거동. 평판-평판 레오미터(Physica MCR500, Anton-Paar)를 이용하여 온도 90 °C에서 유변학적 특성을 비 교하였다. 전단응력 범위는 5~50000 Pa로 응력을 제어하여 응력을 일정속도로 증가시키면서 측정하였다. 틈간격은 0.9~4 mm까지 변화시켰는데 틈간격을 변화시킬 때 마다 새 로운 시편을 사용하였다.

결과 및 토론

고농축 현탁계에 전단응력이 부가되면 입자의 내부 이동에 의한 결과로 벽면 미끄러짐 현상을 보이게 된다. 이와 같은 벽면 미끄러짐 현상은 평판-평판형 레오미터를 사용할 경우 평판 사이의 틈간격을 변화시키거나, 또는 모세관 레오미터 를 사용할 경우 모세관의 지름을 변화시키면서 실험을 수행 하면 조사할 수 있다. Figure 4에는 Engage 8407/Dechlorane plus 25(40/60) 현탁계를 대상으로 평판 사이의 간격을 변화 시키면서 측정한 전단응력과 전단속도의 관계를 도시하였는 데, 전단속도가 증가함에 따라 기울기가 감소하는 전형적인 전단박화현상을 볼 수 있었다. 그러나 놀랍게도 평판 사이의

Figure 4. Shear stress *vs.* apparent shear rate for Engage 8407/ Dechlorane 25 (40/60) measured on parallel disks with different gap separations.

Trade name	Material	Producer	s.g.	m.p (°C)	Remark
Dechlorane 25	-	Oxy-chem	1.8	350	MW: 654 Particle size: 4.5 μm
Engage 8407	Ethylene octane co-polymer	DuPont Dow	0.87	60	Melt index*: 30

*ASTM 1238.

간격이 증가할수록 그 기울기가 감소하는 것을 볼 수 있었는 데 이는 일반적인 벽면 미끄러짐 현상과 상반되는 결과로 본 실험의 경우 앞의 이론 부분의 Figure 1(b)의 경우에 해당할 것으로 추측되었다. 일반적으로 모세관 내에서 희박 또는 중 간농도의 현탁계에 전단응력이 부가되면 벽면의 고체입자 들 이 중심을 향해 이동한다는 것이 알려져 있다.¹⁴⁻¹⁶ 그러나 흥 미롭게도 고분자 결합체인 Engage 8407/Dechlorane plus 25 (40/60)의 고농축 현탁계의 경우는 반대되는 현상이 관찰되었 다. 이에 이를 해석하고자 하였다.

Figure 5는 평판 사이의 간격에 따른 현탁계의 Casson plot 이다. 현탁계는 다음과 같은 Casson model에²³ 의해 묘사할 수 있다.

$$\tau^{1/2} = \tau_{\rm v}^{1/2} + (\eta_{\infty} \dot{\gamma})^{1/2} \tag{7}$$

여기에서, τ는 전단응력, γ는 전단속도, τ,는 Casson 항복응 력, 그리고 η_∞는 Casson 점도이다. 그림을 보면 평판 사이의 간격이 증가함에 따라 y 절편은 감소하였고 최소자승법을 이 용하여 구한 회귀선의 기울기는 거의 같음을 볼 수 있었다.

Casson 항복응력은 현탁액의 응집정도를 나타내는 지표로 서 사용할 수 있는데, 평판 사이의 간격에 따른 현탁액에 대 한 Casson 모델의 직선식의 기울기와 절편으로부터 얻은 결 과를 Table 2에 수록하였다. 평판 사이의 간격이 증가함에 따 라 Casson 항복응력이 감소하는 것을 볼 수 있는데, 이는 넓

Figure 5. Casson plot with various gap distances.

Table 2. Fitting Parameters to Casson Model for Engage 8407/Dechlorane 25 (40/60) at Different Gap Separations

Gap distance (mm)	τ_y (Pa)	η_{∞} (Pa·s)
0.9	292.75	65270
2.0	120.56	67476
4.0	53.61	68563

어진 간격에 따라 입자들이 재배치할 수 있게 유동이 용이해 졌기 때문이라 사료된다. 반면에, 현탁계의 점도는 약간씩 증 가하는 것을 볼 수 있었다.

이러한 경향성을 보다 면밀히 검토하고자 Casson 항복응 력과 Casson 점도를 평판 사이 간격의 역수에 대해 Figure 6 에 도시하였다. 그 결과 Casson 항복 응력은 로그척도로 표 시했을 때 평판 사이 간격의 역수에 선형으로 비례하는 것을 볼 수 있었다. 반면에, Casson 점도는 역시 로그척도로 표시 했을 때 선형을 보였으나 그 경향은 완만히 감소하는 추세를 보였고, 그 기울기는 -0.02 정도로 작은 값이었다. 점도의 추 세가 옳다면 평판 사이의 간격에 따른 측정값도 오차가 아닌 경향성이 존재할 것으로 판단되었다.

Figure 7에 일정 전단응력에서 평판 사이 간격의 역수에 대 해 겉보기 전단속도를 도시하였다. 실험값들은 식 (3)에서 나 타난 것과 같이 직선상에 놓인 것을 볼 수 있었다. 평판 사 이 간격의 역수가 증가함에 따라, 즉, 간격이 감소함에 따라 겉보기 전단속도는 감소하는 것을 알 수 있었고 그 경향은

Figure 6. Casson yield stress and Casson viscosity vs. 1/H.

Figure 7. Apparent shear rate *vs.* 1/(gap separation) in the parallel disk torsional flow experiments.

가해진 전단응력이 증가함에 따라 현저하였다. 일반적인 벽 면 미끄러짐의^{17,22} 경우에는 이 그래프의 기울기가 양수가 되 어 식 (3)의 미끄러짐 속도, u,를 얻을 수 있으나 본 실험의 경우에는 기울기가 크지는 않지만 음의 값을 갖는 음의 미끄 러짐 속도를 얻었다. 가해진 전단응력이 증가할수록, 직선의 기울기 값이 커지는 바, 음의 미끄러짐 속도가 증가하는 것 을 알 수 있었다. 이러한 경향성을 확실히 하기 위하여 같은 실험을 반복하여 유변학적 특성을 측정하였다. 기울기가 음 이라는 것은 참 전단속도가 측정에 의한 겉보기 전단속도보 다 크다는 것을 의미한다. 이는 이론 부분에서 도시한 Figure 1(b)의 경우에 해당하는 것으로 보인다. 양쪽 벽면에 미끄러 지지 않는 no-slip 층이 존재한다는 것인데, 해석을 위해서는 벽면 미끄러짐 식인 식 (3)을 똑같이 적용할 수 있는데 미끄 러짐 속도항의 부호만 달리하면 된다.

이러한 현상은 평판 표면의 일정두께에서 no-slip 층이 존 재한다는 가정을 하여 설명할 수 있으며 Figure 8과 같은 메 카니즘을 제안하고자 한다. Rheometer에서는 평판이 회전하 여 이동한 정도를 평판 사이의 간격으로 나누어서 전단속도

Figure 8. Proposed parallel disk velocity field with actual shear rate and apparent shear rate.

Figure 9. Extended velocity vs. shear stress.

를 계산하는데, 이 경우는 평판으로부터 일정 거리까지 현탁 계가 평판의 속도와 같은 no-slip 층이 있다고 가정하면 그 두께가 끝나는 점을 서로 이어서 평판과 만나도록 확장시켜 보정하면 더 큰 전단속도를 구할 수 있다. &는 no-slip 층의 두께를 의미한다.

Figure 7에서 가해진 전단응력에 따라 각 직선의 기울기를 구한 후, 각각의 기울기, 즉, 음의 미끄러짐 속도(이후 확장속 도, uext라 부름)를 전단응력에 대해 도시하면 Figure 9와 같 다. 전단응력이 증가함에 따라 확장속도는 특정 전단응력에 서 불연속성을 보였는데, 이때 임계 전단응력 값이 4.6 kPa 이었다.

Figure 10은 전단속도를 전단응력에 대해 도시한 그림이다. 겉보기 전단속도와 식 (3)을 이용하여 확장속도를 대입하여 보정한 참 전단속도를 함께 도시하여 임계 전단응력에 해당 하는 참 전단속도 0.048 1/s를 구했다.

Figure 10의 전단응력을 전단속도로 나누어 점도를 구한 후 전단속도에 대해 도시하면 Figure 11과 같이 된다. 여기에서 임계 전단속도에서의 불연속선을 볼 수 있는데 이때의 점도

Figure 10. Average apparent shear rate vs. shear stress.

Figure 11. Average apparent viscosity vs. shear rate.

Polymer(Korea), Vol. 41, No. 1, 2017

Figure 12. No-slip layer thickness vs. shear stress.

는 약 95 kPars였다. 평판·평판 점도계에서 회전에 따른 유동 을 단순화하여 simple shear로 간주하고 fully developed로 가 정하여 Figure 8에서 보정한 실선을 따르는 전단속도로 점도 를 구하면 식 (8)로 쓸 수 있다. 전체의 전단속도는 평판 간 격을 x 축으로 놓고 회전속도의 선속도 환산값을 y축으로 놓 았을 때, 그 기울기로 나타낼 수가 있는데, 왼쪽 아래에 중심 에서 확장된 삼각형이 이루는 기울기와 같게 된다. 따라서 확 장속도와 no-slip 층 두께의 비와도 동일하다.

$$\eta_{\rm ns} = \frac{\tau_{\rm w}}{\dot{\gamma}_{\rm true}} = \frac{\tau_{\rm w}}{u_{\rm ext}/\delta} \tag{8}$$

여기에서, slip layer를 의미하는 하첨자 s는 no-slip layer를 의미하는 하첨자 ns로 대체된다. 따라서 η_s는 no-slip 점도, τ_w 는 벽면 전단응력(wall shear stress), γ_{true}는 참 전단속도(전 체 전단속도는 no-slip 층에서도 같음), u_{ext}는 확장속도, δ는 no-slip 층 두께이다. 이식을 다시 no-slip 층 두께에 대해 정 리하면 식 (9)가 되며 이로써 no-slip 층의 두께를 계산하여 Figure 12에 도시하였다.

$$\delta = \frac{u_{\rm ext} \eta_{\rm ns}}{\tau_{\rm w}} \tag{9}$$

Figure 12를 보면 no-slip 층의 두께는 전단응력이 증가함 에 따라 급격히 감소하다가 4.6 kPa 이상에서 다시 서서히 증 가하는 것을 볼 수 있다. 이러한 임계 전단응력 이상에서는 거의 일정한 no-slip 층의 두께를 유지할 것으로 예측되는 바, 본 실험에 사용된 현탁계 조성에서는 점도측정 시 약 90 μm 의 no-slip 층이 존재한다고 사료되며 이를 감안하여 점도를 보정하여야 한다고 판단된다.

결 론

평판-평판 레오미터를 이용하여 고농축 Engage 8407/ Dechlorane plus 25 현탁계의 흐름거동을 조사하였다. 고농축 현탁계 흐름은 벽면에서 no-slip에 의해 강하게 영향을 받는 것으로 밝혀졌다. 벽에서의 no-slip 층의 두께는 약 90 µm로 계산되었다. 벽면에서의 no-slip 효과에 의해 지배되는 고농 축 현탁계에 대해 보정을 통하여 참 흐름과 변형거동을 결정 하는 것은 고농축 현탁계의 가공에 매우 중요하다고 사료된다.

참 고 문 헌

- 1. M. R. Kamal and A. Mutel, J. Polym. Eng., 5, 293 (1985).
- 2. A. B. Metzner, J. Rheol., 29, 739 (1985).
- 3. S. A. Khan and R. K. Prud'homme, *Rev. Chem. Eng.*, **3**, 205 (1987).
- K. Hu, D. D. Kulkarni, I. Choi, and V. V. Tsukruk, *Prog. Polym. Sci.*, **39**, 1934 (2014).
- 5. D. Bastani, J. Ind. Eng. Chem., 19, 375 (2013).
- S. Lee, I. K. Hong, J. W. Lee, and J. S. Shim, *Polym. Korea*, 38, 225 (2014).
- 7. S. Lee, I. K. Hong, Y. Ahn, and J. W. Lee, *Polym. Korea*, **38**, 272 (2014).
- S. Lee, I. K. Hong, J. W. Lee, and K. D. Lee, *Polym. Korea*, 38, 286 (2014).
- S. Lee, I. K. Hong, J. W. Lee, and W. B. Jeong, *Polym. Korea*, 38, 417 (2014).
- H. A. Barnes, J. F. Hutton, and K. Walters, *An Introduction to Rheology*, Elsevier, Amsterdam, 1989.
- 11. M. Mooney, J. Rheol., 2, 210 (1931).
- 12. Y. Cohen and A. B. Metzner, J. Rheol., 29, 67 (1985).
- T. Q. Jiang, A. C. Young, and A. B. Metzner, *Rheol. Acta*, 25, 397 (1986).
- 14. G. Segre and A. Silberberg, Nature, 189, 209 (1961).
- 15. G. Segre and A. Silberberg, J. Fluid Mech., 14, 136 (1962).
- 16. V. Seshadri and S. P. Sutera, Trans. Soc. Rheol., 14, 351 (1970).
- 17. A. Yoshimura and R. K. Prud'homme, J. Rheol., 32, 53 (1988).
- 18. B. Rabinowitsch, Z. Physik. Chem., A145, 1 (1929).
- 19. Y. Cohen and A. B. Metzner, J. Rheol., 29, 67 (1985).
- T. Q. Jiang, A. C. Young, and A. B. Metzner, *Rheol. Acta*, 25, 397 (1986).
- W. Kozicki, S. N. Pasari, A. R. K. Rao, and C. Tiu, *Chem. Eng. Sci.*, **25**, 41 (1970).
- 22. U. Yilmazer and D. M. Kalyon, J. Rheol., 33, 1197 (1989).
- 23. N. Casson, in *Rheology of disperse systems*, C. C. Mill, Editor, Pergamon Press, London, p 84 (1959).